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Supplementary materials
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The materials, including reading list and slides, are available on 
the tutorial website at https://convsearch.github.io/

https://convsearch.github.io/


Part I: Fundamentals of Conversational Search [90 min]

● Introduction to conversational search
● Conversational search paradigms 
● Mixed initiatives
● Discussion 

Break  [30 min]

Part II: Emerging Topics in the LLM Era [90 min]

● Conversational search with LLM-based generation 
● Personalized conversational search 
● Automatic evaluation for conversational search 
● Agentic conversational search
● Conclusions and future directions
● Discussion

OverviewOverview
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OverviewOverview
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Heads-up: Tutorial this afternoon in the same room
● Title: Query Understanding in LLM-based Conversational Information Seeking 

(CIS)

● Scope: 

○ Background & terminology of query understanding in LLM-based CIS

○ How LLMs enhance the understanding of conversational user queries

○ Challenges in accurately predicting user intent

○ Future directions and research opportunities
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Part 1
 Fundamentals of Conversational Search 



General goal: Conversational search aims to identify relevant documents to 

satisfy users' complex information needs through multi-turn interactions.

Conversational Search v.s. Ad-hoc Search: 

➢ Multi-turn interaction v.s. Single-turn search

➢ Natural language based query v.s. Keyword based query 

➢ Flexible interface and return forms v.s. Fixed page links return

Conversational Search
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Comparison between Conversational and Ad-hoc Search
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Ad-hoc Search

Conversational Search



➢ Natural Interaction - feel like talking to a human

➢ Context Awareness - understand follow-up queries and refine results

➢ Handles Complex Queries - support clarification, refinement, and reasoning

➢ Improves User Experience: 

○ reduces the need of query reformulation

○ friendly for non-technical users

○ delivers more precise, personalized results

➢ Etc.

Why Conversational Search is Important?
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Introduction for Conversational Search



User queries in conversational search

➢ Context-dependent query

○ Query: How many rings does he have? (what rings? who is he?)
➢ Ambiguous query

○ Query: What is the price of apple? (fruit or any apple products)

➢ Topic-Switch

○ Previous Query: When was the byzantine empire born? (Topic: History)

○ Query: What is its famous tourist places now? (Topic: Tourism)

➢ Etc.

Introduction
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Conversational search systems capacity

➢ Context-dependent query ⇒ Understand real search intent via context 

modeling

➢ Ambiguous query ⇒ Search intent clarification (Mixed Initiatives)

➢ Topic-Switch ⇒ Context denoising via turn relevance/usefulness

➢ Etc.

Introduction
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Conversational search systems capacity

➢ Understand real search intent via context modeling

○ Q1: Who is the best player in NBA so far? R1: Michael Jordan.

○ Q2: How many rings does he have?

○ ⇒ How many NBA championship rings does Michael Jordan have? 

➢ Search intent clarification (Mixed Initiatives)

➢ Context denoising via turn relevance/usefulness

➢ Etc.

Introduction
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Conversational search systems capacity

➢ Understand real search intent via context modeling

➢ Search intent clarification (Mixed Initiatives)

○ What is the price of apple here?

○ ⇒ Are you requesting for the price of apple fruit or any digital products 

from apple company?

➢ Context denoising via turn relevance/usefulness

➢ Etc.

Introduction
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Conversational search systems capacity

➢ Understand real search intent via context modeling

➢ Search intent clarification (Mixed Initiatives)

➢ Context denoising via turn relevance/usefulness

○ Q1: When was the byzantine empire born? (Relevant)

○ Q3: Which battle or event marked the fall of this empire?

○ Q5: Can you name some of major cities in Turkey? (Relevant)

○ Current Query: Were any of these cities associated with the first empire 

you were discussing?

Introduction
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User-system interactions in conversational search

➢ Context-dependent query ⇔ Understand real search intent

➢ Ambiguous query ⇔ Search intent clarification (Mixed Initiatives)

➢ Topic-Switch ⇔ Context denoising via turn relevance/usefulness

➢ Etc.

Introduction

16

The goal is to understand and satisfy users’ complex 
information needs under multi-turn natural language based 
conversations with flexible input and interface.



Task Formulation of Conversational Search

Problem Definition

17



From NLP community

➢ TopiOCQA [1], QReCC [2], INSCIT [3], CORAL [4], etc.

From IR community

➢ TREC CAsT 2019-2022 [5] and TREC iKAT 2023-2024 [6]

➢ OR-QuAC [7], ProCIS [8]

➢ Etc.

Widely Used Datasets
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[1] TopiOCQA: Open-domain Conversational Question Answering with Topic Switching. Adlakha et al. TACL 2022.
[2] Open-Domain Question Answering Goes Conversational via Question Rewriting. Anantha et al. NAACL 2021.
[3] InSCIt: Information-Seeking Conversations with Mixed-Initiative Interaction. Wu et al. TACL 2023.
[4] CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation. Cheng et al. NAACL 2024.
[5] https://github.com/daltonj/treccastweb
[6] https://www.trecikat.com/
[7] Open-retrieval conversational question answering. Qu et al. SIGIR 2020.
[8] ProCIS: A benchmark for proactive retrieval in conversations. Samarinas et al. SIGIR 2024.

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00559/116048
https://github.com/daltonj/treccastweb
https://www.trecikat.com/
https://dl.acm.org/doi/abs/10.1145/3626772.3657869
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Two Paradigms to achieve Conversational Search
1. Conversational Query Rewriting
2. Conversational Dense Retrieval



Conversational Query Rewriting (CQR)

➢ Idea: Transform a context-dependent query into an explicit rewritten query.

Two Conversational Search Paradigms
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Conversational Dense Retrieval (CDR)

➢ Idea: Obtain a conversational dense retriever with contextual representation.



Conversational query rewriting methodologies in literature:

Approaches of earlier studies:

➢ Selecting useful terms from historical context.

➢ Rewriting context-dependent query to mimic human-rewritten one.

➢ Leveraging search task signals for rewriter model training.

Under large language models (LLMs) era:

➢ Prompting LLMs to directly rewrite context-dependent query.

➢ Leverage LLMs to generate better rewritten query as training signals.

Conversational Query Rewriting
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Selecting useful terms from historical context

➢ Idea: Context from the conversational history can be used to arrive at a better 

expression of the current turn query [1].

Conversational Query Rewriting

22
[1] Query resolution for conversational search with limited supervision. Voskarides et al. SIGIR 2020.



Selecting useful terms from historical context

➢ Challenge: The token-level usefulness annotations are unavailable.

➢ [1,2,3] propose to generating token-level pseudo relevant labels and use them 

to train a binary classifier or selector to select useful terms in the context.

➢ The selected relevant terms could act as query expansion, but could be noisy.

Conversational Query Rewriting
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[1] Query resolution for conversational search with limited supervision. Voskarides et al. SIGIR 2020.
[2] Multi-stage conversational passage retrieval: An approach to fusing term importance estimation and neural query rewriting. Lin et al. TOIS 2021.
[3] Contextualized Query Embeddings for Conversational Search. Lin et al. EMNLP 2021.



Rewriting context-dependent query to mimic human-rewritten one

➢ Idea: [1,2,3,4] Train a generative rewriter via the pairs of context and rewrites.

➢ Cons: Cannot optimize with downstream search task and rely on manual labels. 

Conversational Query Rewriting
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[1] Few-shot generative conversational query rewriting. Yu et al. SIGIR 2020.
[2] Question rewriting for conversational question answering. Vakulenko et al. WSDM 2021.
[3] A Comparison of Question Rewriting Methods for Conversational Passage Retrieval. Vakulenko et al. ECIR 2021.
[4] Explicit query rewriting for conversational dense retrieval. Qian et al. EMNLP 2022.

Historical Context + 
Current Query 

Rewritten Query 

Rewriter Model 



Leveraging search task signals for rewriter model training

➢ Idea: [1,2,3,4] enhance the learning of rewriter with search task signals.

➢ Approach: Contain two optimization parts, query generation and search 

signals in the training objective. The search signals could be formulated as 

representation fine-tuning [3,4] or reinforcement learning [1,2].

Conversational Query Rewriting
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[1] CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement Learning. Wu et al. EMNLP 2022.
[2] Reinforced Question Rewriting for Conversational Question Answering. Chen et al. EMNLP 2022.
[3] ConvGQR: Generative Query Reformulation for Conversational Search. Mo et al. ACL 2023.
[4] Search-Oriented Conversational Query Editing. Mao et al. ACL 2023.



Leveraging search task signals for rewriter model training

➢ Approach: The search signals could be formulated as representation 

fine-tuning [3,4] or reinforcement learning [1,2].

➢ Pros: Optimizing query generation toward search task. 

Conversational Query Rewriting
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[1] CONQRR: Conversational Query Rewriting for Retrieval with Reinforcement Learning. Wu et al. EMNLP 2022.
[2] Reinforced Question Rewriting for Conversational Question Answering. Chen et al. EMNLP 2022.
[3] ConvGQR: Generative Query Reformulation for Conversational Search. Mo et al. ACL 2023.
[4] Search-Oriented Conversational Query Editing. Mao et al. ACL 2023.



Prompting LLMs to directly rewrite context-dependent query

➢ Idea: Leveraging LLMs’ conversation understanding and text generation 

capacity to grasp users’ contextual search intent [1].

➢ Approach: Design prompts from various 

aspects [2,3] to generate query.

➢ LLM4CS [1]: generate different types of queries

and then aggregate them.

Conversational Query Rewriting
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[1] Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search. Mao et al. EMNLP 2023.
[2] Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting. Ye et al. EMNLP 2023.
[3] CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search.. Mo et al. EMNLP 2024.



Prompting LLMs to directly rewrite context-dependent query
➢ Observation: LLM-based query rewriting could obtain much better results [1] 

compared to SLM-based query rewriter [2,3].

➢ Limitations: 

○ High inference cost by calling LLMs (multiple times) for each query.

○ The rewritten query might still contain noise and cannot generalize.

Conversational Query Rewriting
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[1] Large Language Models Know Your Contextual Search Intent: A Prompting Framework for Conversational Search. Mao et al. EMNLP 2023
[2] Conversational question reformulation via sequence-to-sequence architectures and pretrained language models. Lin et al. arXiv 2020
[3] ConvGQR: Generative Query Reformulation for Conversational Search. Mo et al. ACL 2023.



Leverage LLMs to generate better rewritten query as training signals

➢ Assumption: The human-rewritten query might be sub-optimal [1] as a 

search query.

➢ Motivation: Leverage small LM for query rewriting to reduce latency.

➢ Idea: Use LLMs to generate better pseudo query with qualified signal (e.g., 

relevance judgment [2,3], search reward [4,5]) for model training, similar to 

knowledge distillation from LLMs.

Conversational Query Rewriting
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[1] ConvGQR: Generative Query Reformulation for Conversational Search. Mo et al. ACL 2023.
[2] IterCQR: Iterative Conversational Query Reformulation without Human Supervision. Jang et al. NAACL 2023.
[3] CHIQ: Contextual History Enhancement for Improving Query Rewriting in Conversational Search.. Mo et al. EMNLP 2024.
[4] ADACQR: Enhancing Query Reformulation for Conversational Search via Sparse and Dense Retrieval Alignment. Lai et al. COLING 2024.
[5] Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers. Zhang et al. EMNLP 2024.



Leverage LLMs to generate better rewritten query as training signals

➢ Approach: [1] iteratively update training signals and model based on LLM 

multi-rounds generated signals.

Conversational Query Rewriting
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[1] IterCQR: Iterative Conversational Query Reformulation without Human Supervision. Jang et al. NAACL 2023.



Summary of CQR paradigm:

➢ Pros: Can re-use any existing retrievers and has good interpretability with 

explicit rewritten query.

➢ Cons: Cannot directly optimize with downstream search task and the rewriter 

model training rely on available annotations as supervision signals.

➢ Open question: 

○ Does LLM already solve conversational query rewriting?

○ How to deal with instruction-following style long query in LLM era?

Conversational Query Rewriting
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Q & A



Conversational dense retrieval methodologies in literature:

➢ Explicit and implicit context denoising

➢ Data augmentation for query-documents relevance judgments

➢ Leveraging more conversational signals for dense retrieval training

➢ Generative LLM-based conversational dense retrieval

Conversational Dense Retrieval
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Assumption: Not all historical turn are relevant for the current turn search [1,2].

Explicit context denoising

➢ Idea: First developing some mechanisms to identify the useful/relevant 

historical context and then use the context to enhance dense retrieval [1,2].

Implicit context denoising

➢ Idea: Enable the dense retriever to implicitly identify and pay less attention to 

noisy/irrelevant historical context [3,4].

Conversational Dense Retrieval

34

[1] Curriculum contrastive context denoising for few-shot conversational dense retrieval. Mao et al. SIGIR 2022.
[2] Learning to relate to previous turns in conversational search. Mo et al. SIGKDD 2023.
[3] Learning denoised and interpretable session representation for conversational search. Mao et al. WWW 2023..
[4] History-aware conversational dense retrieval.. Mo et al. ACL 2024.



Explicit and implicit context denoising

➢ Key challenge: Turn relevance annotation is unavailable.

➢ Human-annotated turn relevance based on topic information [1].

➢ Cons: 

○ Judgments are subjective.

○ Cannot scaling-up.

Conversational Dense Retrieval

35
[1] Curriculum contrastive context denoising for few-shot conversational dense retrieval. Mao et al. SIGIR 2022.



Explicit and implicit context denoising
➢ [1,2] conducts pseudo labeling for the context based on the impact on retrieval 

results of a candidate turn or term, which is used to expand the query.
➢ Example: If                                          , we assume     is relevant to    .

Conversational Dense Retrieval

36[1] Learning to relate to previous turns in conversational search. Mo et al. SIGKDD 2023.
[2] History-aware conversational dense retrieval.. Mo et al. ACL 2024.



Data augmentation for query-documents relevance judgments

➢ Idea: Generating more query-document relevance judgments to address the data 

scarcity issue [1,2] — conversational search systems are not widely deployed.

➢ Key challenge: 

○ The conversation session should be consistent and aligned with 

query-documents relevance judgments [2,3].

○ The distribution between generated data and evaluated benchmark [4].

Conversational Dense Retrieval
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[1] Dialog inpainting: Turning documents into dialogs. Dai et al. ICML 2022.
[2] Convtrans: Transforming web search sessions for conversational dense retrieval. Mao et al. EMNLP 2022.
[3] ConvSDG: Session Data Generation for Conversational Search. Mo et al. WWW 2024 @LLM4IR.
[4] Generalizing conversational dense retrieval via llm-cognition data augmentation. Chen et al. ACL 2024.

https://aclanthology.org/2022.emnlp-main.190/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:LkGwnXOMwfcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SXAurKsAAAAJ&sortby=pubdate&citation_for_view=SXAurKsAAAAJ:roLk4NBRz8UC


Data augmentation for query-documents relevance judgments

➢ Solutions for generating conversational search session:

○ From documents to simulate a user-system interaction [1].

○ From session search data to reuse relevance judgments [2].

○ From existing conversational search session by rewriting each turn [3].

○ From existing conversational search session to enhance diversity [4].

Conversational Dense Retrieval

38

[1] Dialog inpainting: Turning documents into dialogs. Dai et al. ICML 2022.
[2] Convtrans: Transforming web search sessions for conversational dense retrieval. Mao et al. EMNLP 2022.
[3] ConvSDG: Session Data Generation for Conversational Search. Mo et al. WWW 2024 @LLM4IR.
[4] Generalizing conversational dense retrieval via llm-cognition data augmentation. Chen et al. ACL 2024.

https://aclanthology.org/2022.emnlp-main.190/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:LkGwnXOMwfcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=SXAurKsAAAAJ&sortby=pubdate&citation_for_view=SXAurKsAAAAJ:roLk4NBRz8UC


Simulation from a passage [1]

Conversational Dense Retrieval

39
[1] Dialog inpainting: Turning documents into dialogs. Dai et al. ICML 2022.
[2] Convtrans: Transforming web search sessions for conversational dense retrieval. Mao et al. EMNLP 2022.
[3] ConvSDG: Session Data Generation for Conversational Search. Mo et al. WWW 2024 @LLM4IR.

Transfer from session search [2] Rewrite from existing data [3]

https://aclanthology.org/2022.emnlp-main.190/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:LkGwnXOMwfcC


Leveraging more conversational signals for dense retrieval training

➢ Idea: Using additional signal mined from conversational scenarios for dense 

retriever training, e.g., rewritten query, conversational hard negatives.

➢ [1,3] leverage rewritten query and relevance judgment for model training.

➢ [2,4] mine additional hard negatives from historical turns as contrastive samples.

○ From conversational query rewriting model [2]

○ From irrelevant historical turns’ positive documents [4]

Conversational Dense Retrieval
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[1] Few-shot conversational dense retrieval. Yu et al. SIGIR 2021.
[2] Saving dense retriever from shortcut dependency in conversational Search. Kim et al. EMNLP 2022.
[3] Aligning Query Representation with Rewritten Query and Relevance Judgments in Conversational Search. Mo et al. CIKM 2024.
[4] History-aware conversational dense retrieval.. Mo et al. ACL 2024.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:ULOm3_A8WrAC


Generative LLM-based conversational dense retrieval

➢ Idea: Using the powerful LLM with high capacity to facilitate conversational 

dense retriever fine-tuning.

➢ [1,4] leverage the semantic feature distilled from LLM to improve the 

conversational dense retriever fine-tuning based on small language models.

➢ [2,3] use LLM as backbone to fine-tune for retrieval and conversation tasks.

Conversational Dense Retrieval
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[1] InstructoR: Instructing Unsupervised Conversational Dense Retrieval with Large Language Models. Jin et al. EMNLP 2023.
[2] ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval. Mao et al. EMNLP 2024.
[3] UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations. Mo et al. ACL 2025.
[4] DiSCo: LLM Knowledge Distillation for Efficient Sparse Retrieval in Conversational Search. Lupart et al. SIGIR 2025.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:roLk4NBRz8UC
https://www.overleaf.com/project/66d136946dfed1cc41030ea6
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=gJQMnv8AAAAJ&sortby=pubdate&citation_for_view=gJQMnv8AAAAJ:eQOLeE2rZwMC


Generative LLM-based conversational dense retrieval

Conversational Dense Retrieval

42
[1] InstructoR: Instructing Unsupervised Conversational Dense Retrieval with Large Language Models. Jin et al. EMNLP 2023.
[2] ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval. Mao et al. EMNLP 2024.

Use LLM as backbone to fine-tune for retrieval and conversation tasks [2]Distill features from LLM [1]

More details in Part II

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:roLk4NBRz8UC


Summary:

➢ Pros: Direct optimize with conversational session to obtain representation.

➢ Cons: Data scarcity problem and de-noising requirement for the input context.

➢ Open question: 

○ How to improve efficiency and generalizability?

○ How to mine more conversational signals for better representation?

Conversational Dense Retrieval

43
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Mixed Initiatives 



Mixed Initiatives 
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● What is mixed initiative?
○ User and system can both take the initiative at different times in a 

conversation [1]
○ System can take the initiative to ask clarifying questions, elicit user 

preferences, ask for feedback, provide suggestions 
○ User satisfaction has been reported to increase when prompted with 

system-initiatives, e.g., clarifications [2]

[1] Radlinski et al. A Theoretical Framework for Conversational Search. CHIIR 2017.
[2] Kiesel et al. Toward voice query clarification. SIGIR 2018.



Mixed Initiatives 
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● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction



Mixed Initiatives 
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● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction



Mixed Initiatives 
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● Clarifying question selection
○ [1] releases the Qulac dataset, where each query is associated with a set 

of human-generated questions
■ Retrieve a set of questions for a given query, and then select the 

best question by a BERT-based model (NeuQS) 
■ Adding selected question improves document retrieval quality

○ [2] releases a larger dataset, ClariQ

[1] Aliannejadi et al. Asking Clarifying Questions in Open-Domain Information-Seeking Conversations. SIGIR 2019.   
[2] Aliannejadi et al. Building and Evaluating Open-Domain Dialogue Corpora with Clarifying Questions. EMNLP 2021.



Mixed Initiatives 
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● Clarifying question generation
○ Selecting clarifying questions from a human-generated question set does 

not generalize well in real-world scenarios; training data is scarce
○ [1] learns to generate clarifying questions

■ Mine question templates from query reformulation data from Bing 
■ Generate training data by selecting and filling out question templates
■ Train a sequence-to-sequence model on the data

[1] Zamani et al. Generating Clarifying Questions for Information Retrieval. WWW 2020.



Mixed Initiatives 
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● Clarifying question generation
○ [1,2] finetunes BART, while [3] fine-tunes GPT-2
○ [3] argues that more semantic guidance is needed

■ Fine-tine GPT-2 conditioned on a facet and the user query
● facet [SEP] user query [BOS] →clarifying question [EOS]

○ [4] extracts facets from documents retrieved by the user query

[1] Guo et al. Abg-CoQA: Clarifying Ambiguity in Conversational Question Answering. AKBC 2021.
[2] Lee et al. Asking Clarification Questions to Handle Ambiguity in Open-Domain QA. EMNLP 2023.
[3] Sekulić, et al. Towards Facet-Driven Generation of Clarifying Questions for Conversational Search. ICTIR 2021.
[4] Sekulić, et al. Exploiting Document-Based Features for Clarification in Conversational Search. ECIR 2022.

(only query)
(+facet)



Mixed Initiatives 
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● Clarifying question generation
○ Heavily relies on human-annotated data; open-ended generation often 

yields non-clarifying text, and ignores given facets
○ [1] uses GPT-2 for zero-shot clarifying question generation

■ Template-initiated generation: use clarifying question templates as 
the starting text of the generation

■ Facet-constrained generation: use facet words as constraints during 
generation decoding

[1] Wang et al. Zero-shot Clarifying Question Generation for Conversational Search. WWW 2023.

Templates Generated clarifying question

For the query "I am looking for information about South Africa."



Mixed Initiatives 
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● Clarifying question generation
○ [1,2] use LLMs with better capabilities 

■ Apply few-shot [1,2] and chain-of-thought (CoT) prompting [1,2] to 
improve performance

[1] Zhang et al. CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models. ACL 2024.
[2] Deng et al. Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration. EMNLP 2023. 



Mixed Initiatives 
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● Clarifying question generation
○ Previous work with CoT prompting overlooks clarification-specific aspects
○ [1] Integrates ambiguity types in CoT prompting to improve clarifying 

question generation

[1] Tang et al. Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation. SIGIR 2025.



Mixed Initiatives 
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● Clarifying question generation
○ Previous work with CoT prompting overlooks clarification-specific aspects
○ [1] Integrates ambiguity types in CoT prompting to improve clarifying 

question generation

[1] Tang et al. Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation. SIGIR 2025.



Mixed Initiatives 
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● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction



Mixed Initiatives 
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● Conversation contextualisation/interest anticipation
○ [1,2] release datasets targeting:

■ Conversation contextualisation
■ Interest anticipation

[1] Ros et al. Retrieving Webpages Using Online Discussions. ICTIR 2023.
[2] Samarinas et al. ProCIS: A Benchmark for Proactive Retrieval in Conversations. SIGIR 2024.



Mixed Initiatives 
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● Conversation contextualisation/interest anticipation
○ Feed raw conversational context to neural retrievers pre-trained on ad-hoc 

search data
■ Limitation: Input gap between ad-hoc pre-training and inference [1]

○ Further fine-tunes ad-hoc neural retrievers on conversational data
■ Limitation: Input gap between ad-hoc pre-training and fine-tuning [1]

[1] Meng et al. Bridging the Gap: From Ad-hoc to Proactive Search in Conversations. SIGIR 2025. 



Mixed Initiatives 
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● Conversation contextualisation/interest anticipation
○ [1] proposes Conv2Query

■ Transforms conversational context into ad-hoc queries, which are 
used to
● Query off-the-shelf ad-hoc retrievers
● Further fine-tune ad-hoc retrievers

[1] Meng et al. Bridging the Gap: From Ad-hoc to Proactive Search in Conversations. SIGIR 2025. 
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● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction
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[1] Wang et al. Controlling the Risk of Conversational Search via Reinforcement Learning. WWW 2021.
[2] Wang et al. Simulating and Modeling the Risk of Conversational Search. TOIS 2022.

● Why timing matters in taking initiative
○ Initiative-taking carries the risk of offending or overwhelming users, which 

can lower the overall user experience [1,2]

Are you looking for today’s weather or 
a weekly forecast?Weather in Padua?

system



Mixed Initiatives 

62

● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction
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[1] Aliannejadi et al. Building and Evaluating Open-Domain Dialogue Corpora with Clarifying Questions. EMNLP 2021.
[2] Guo et al. Abg-CoQA: Clarifying Ambiguity in Conversational Question Answering. AKBC 2021.
[3] Lee et al. Asking Clarification Questions to Handle Ambiguity in Open-Domain QA. EMNLP 2023.

● Clarification need prediction
○ [1,2,3] fine-tune pre-trained language models on human-annotated data

■ E.g., given the user query, [1] fine-tunes a model to output 1 (no 
need for clarification) to 4 (clarification is necessary)

Results from [1] on clarification need prediction using ClariQ
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64[1] Arabzadeh et al. Unsupervised Question Clarity Prediction Through Retrieved Item Coherency. CIKM 2022.

● Clarification need prediction
○ Existing studies rely on small-scale and costly human-annotated data
○ [1] proposes an unsupervised method, assuming that less ambiguous 

queries retrieve more coherent results
■ It builds a graph from retrieved items using context similarity, and 

uses graph connectivity as an ambiguity signal
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[1] Wang et al. Controlling the Risk of Conversational Search via Reinforcement Learning. WWW 2021.
[2] Wang et al. Simulating and Modeling the Risk of Conversational Search. TOIS 2022.

● Clarification need prediction
○ Without using any human-annotated data, [1,2] train a model by 

reinforcement learning (RL), with rewards from a rule-based simulator

Policy table from [1,2] 
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● Clarification need prediction
○ [1,2] use few-shot and CoT prompting

■ Model clarification need prediction, clarifying question generation 
and answer generation jointly [1,2]

[1] Zhang et al. CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models. ACL 2024.
[2] Deng et al. Prompting and Evaluating Large Language Models for Proactive Dialogues: Clarification, Target-guided, and Non-collaboration. EMNLP 2023. 
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[1] Lu et al. Zero-Shot and Efficient Clarification Need Prediction in Conversational Search. ECIR 2025.

● Clarification need prediction
○ LLMs are inefficient, and training smaller models still relies on costly 

human-annotated data
○ [1] uses LLMs to generate pseudo data, and train efficient models (e.g., 

BERT) on the generated data
■ Propose counterfactual query generation mechanism, which is more 

effective than seperate generation
● Efficient models trained on pseudo data outperform 

zero-shot/few-shot LLMs
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● Scope for mixed initiatives
○ What

■ Clarifying question selection/generation
■ Conversation contextualisation/interest anticipation

○ When
■ Clarification need prediction
■ System initiative prediction
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69[1] Meng et al. System Initiative Prediction for Multi-turn Conversational Information Seeking. CIKM 2023.

● System initiative prediction (SIP)
○ Existing studies take a narrow view of system initiative, focusing mainly 

on clarification and ignoring other actions [1]
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● System initiative prediction (SIP)
○ Directly predicting a system action from a large action space is 

challenging [1]
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● System initiative prediction (SIP)
○ [1] proposes SIP

■ Model SIP and action prediction into sequential steps
■ SIP-aware action prediction leads to improved effectiveness
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[1] Meng et al. System Initiative Prediction for Multi-turn Conversational Information Seeking. CIKM 2023.

● System initiative prediction (SIP)
○ [1]’s empirical analysis reveals structural dependencies in SIP:

■ System is more likely to take the initiative immediately after the user has taken 
the initiative in a conversation

■ System is less likely to take the initiative once again if the system has already 
taken the initiative before

○ [1] models SIP with CRF, a probabilistic graphical method
■ outperform LLMs and exhibit transparency
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Part 2
Emerging Topics in the LLM Era



Part II: Emerging Topics in the LLM Era

● Conversational search with LLM-based generation 

● Personalized conversational search

● Automatic evaluation for conversational search

● Agentic conversational search

● Conclusions and future directions 

● Discussion

OverviewOverview
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What are the new features of conversational 
search in the era of LLM?



User behaviour for information-seeking shift in the LLM Era:

➢ Interact with LLM application via natural language (Context Modeling)

➢ Refine their information needs (Query rewriting and Mix-initiative)

New features:

➢ Expect to get (customized) final response instead of browsing websites

➢ Most of the users have no idea about the used applications based on generative 

models and cannot distinguish them with search engine (Truthfulness).

➢ Interactive information accessing provides more context and user information.

➢ Etc.

Conversational Search in the LLM Era
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User behaviour for information-seeking shift in the LLM Era:

➢ Interaction with LLM application via natural language (Context Modeling)

➢ Refine their information needs (Query rewriting and Mix-initiative)

New features:

➢ Expect to get (customized) final response instead of browsing website

➢ Most of the user have no idea about the application based on generative models 

and distinguish them with search engine (Truthfulness).

➢ Interactive information accessing provides more context and user information.

➢ Etc.

Conversational Search in the LLM Era
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Question: How should the goals and paradigms of 

conversational search shift correspondingly in the LLM era?



Conversational retrieval-augmented generation (RAG)

➢ Single turn RAG v.s. Conversational (Multi-turn) RAG

➢ Leveraging historical information for conversational RAG

➢ Integrating search model with LLMs in conversations

Generating Response in Conversational Search
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Single turn RAG [1]

➢ Trend: LLMs can direct reply users’ question with their parametric knowledge.

➢ Challenge: LLMs would still generate plausible but incorrect responses for 

some given queries when their internal knowledge is out-of-date.

➢ Goal: Incorporate the retrieved up-to-date information for generation.

➢ Paradigm: Generate response for a query on top of retrieved information.

Generating Response in Conversational Search
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[1] Retrieval-augmented generation for knowledge-intensive nlp tasks. Lewis et al. NIPS 2020.



Single turn RAG [1] v.s. Conversational (Multi-turn) RAG [2]

➢ Feature: More available information beyond query-response pairs.

➢ Existing paradigm: Convert multi-turn into single-turn.

➢ Question: Could we improve the system performance by multi-turn information?

Generating Response in Conversational Search

82[1] Retrieval-augmented generation for knowledge-intensive nlp tasks. Lewis et al. NIPS 2020.
[2] CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation. Cheng et al. NAACL 2024.



Conversational retrieval-augmented generation (RAG)

➢ Leveraging historical information for conversational RAG

○ Idea: The historical information (not limited to query-response pairs) 

could enhance the effectiveness [1,3], efficiency [2], and truthfulness [1] 

of the current turn RAG.

Generating Response in Conversational Search
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[1] CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation. Cheng et al. NAACL 2024.
[2] Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA. Roy et al. EMNLP 2024.
[3] Conv-CoA: Improving Open-domain Question Answering in Large Language Models via Conversational Chain-of-Action. Pan 2024.



Leveraging Historical Information for conversational RAG

➢ Effectiveness and truthfulness in conversational RAG

Generating Response in Conversational Search

84[1] CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation. Cheng et al. NAACL 2024.

○ [1] proposes a conversational 

RAG benchmark with 

passage retrieval, response 

generation, and citation 

labeling grounding on 

passage IDs.



Conversational retrieval-augmented generation (RAG)

➢ Leveraging historical information for efficient conversational RAG

Generating Response in Conversational Search
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[1] Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA. Roy et al. EMNLP 2024.

○ Idea: Reducing the system 

latency by judging whether the 

required passages have already 

been retrieved in history before 

calling retriever for searching [1].

○ Challenge: When to retrieve?



Conversational retrieval-augmented generation (RAG)

➢ Leveraging historical information for conversational RAG

○ Idea: [1] maintain a contextual set from history to answer later turns.

Generating Response in Conversational Search

86[1] Conv-CoA: Improving Open-domain Question Answering in Large Language Models via Conversational Chain-of-Action. Pan 2024.
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➢ An unified model can reduce model 

maintenance cost [1] and risk of 

discrepancy (e.g., the utilization of the 

search results for generation [2]).

➢ The intrinsic knowledge of LLMs could be 

used for ranking and response generation 

via a unified model [1].
[1] RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs. Yu et al. NIPS 2024.
[2] Evaluating Retrieval Quality in Retrieval-Augmented Generation.Salemi et al. SIGIR 2024.

Integrating search model with LLMs in conversations



Generating Response in Conversational Search

88

Integrating search model with LLM by developing unified model

➢ SLM (e.g., BERT) as retriever [1] v.s. LLM (e.g., LLaMA) as retriever [2].

➢ The success of LLM-based retriever [2] shows the feasibility for adapting it to 

conversational scenarios [3].

[1] Dense Passage Retrieval for Open-Domain Question Answering. Karpukhin et al. EMNLP 2020.
[2] Fine-tuning llama for multi-stage text retrieval. Ma et al. SIGIR 2024
[3] ChatRetriever: Adapting Large Language Models for Generalized and Robust Conversational Dense Retrieval. Mao et al. EMNLP 2024.

https://arxiv.org/pdf/2004.04906v2/1000
https://dl.acm.org/doi/abs/10.1145/3626772.3657951?casa_token=DDusEMNPuZkAAAAA:t7R2NE5KftJeI1T1I8CnPA2YS7RMApdM1mmLcyQnqrWMrQ7eh3y1IZtKbgQE4nJ4MUxQNGbFlh1erw
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&citation_for_view=AqsGXGkAAAAJ:roLk4NBRz8UC
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[1] RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs. Yu et al. NIPS 2024.
[2] OneGen: Efficient One-Pass Unified Generation and Retrieval for LLMs. Zhang et al. EMNLP 2024.
[3] UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations. Mo et al. ACL 2025.

Search model integrated with LLM by a unified model in conversations
➢ Three crucial abilities: conversational understanding, retrieval, generation.

➢ [1,2,3] unify a retriever/re-ranker with a generator by accommodating the 

training objective to keep the retrieval/ranking and response generation ability.

https://www.overleaf.com/project/66d136946dfed1cc41030ea6
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[1] UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations. Mo et al. ACL 2025.

Search model integrated with LLM by a unified model in conversations
➢ Key points: Maintain the generation ability and extend with the capability of 

retrieval and search intent understanding in conversational sessions during 

training [1].

https://www.overleaf.com/project/66d136946dfed1cc41030ea6


Summary:

➢ Conclusion: The useful information from historical turns can improve system 

performance from different perspectives.

➢ Key Challenge: Identify the useful information from super noisy history.

➢ Open questions: 

○ How to better leverage historical information for conversational RAG?

○ How to make the system more efficient with large models?

○ How to evaluate the generated response (in conversational scenario)?

Generating Response in Conversational Search
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Personalized Conversational Search



➢ Goal: Satisfy users' complex information needs based on users' profiles and 

preference through multi-turn interactions.

➢ Assumption: The same query turn from different users may correspond to 

different search intents, thus yielding different results.

➢ User information: Profile, historical preference, click/interactive behaviour.

➢ General Paradigm:

Personalized Conversational Search

94



Incorporating explicit user profile into query rewriting

➢ User profile in natural language format as Personal Text Knowledge Base [1,2].

➢ Sub-task: (1) PTKB selection, (2) Personalized retrieval in conversations.

Personalized Conversational Search - TREC iKAT

95[1] TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview. Aliannejadi et al. TREC 2023.
[2] Conversational Gold: Evaluating Personalized Conversational Search System using Gold Nuggets. Abbasiantaeb et al. SIGIR 2025.

https://arxiv.org/search/cs?searchtype=author&query=Aliannejadi,+M
https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=gJQMnv8AAAAJ&sortby=pubdate&citation_for_view=gJQMnv8AAAAJ:LkGwnXOMwfcC


Incorporating explicit user profile into query rewriting

➢ Idea:  Determine the relevant pieces from user profile for each query turn and 

incorporate the selected information into query rewriting as user modeling.

➢ Key challenge: Not all turns require personalization (using user profile).

○ Do I need a visa to travel to Egypt? (Require user information)

○ What are the prices of Egyptian E-visa and on-arrival visa. (Not require)

Personalized Conversational Search
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Incorporating explicit user profile into query rewriting

➢ [1] analyze the potential discrepancies between human labeled relevant 

pieces and the machine judged ones, when personalization is required.

Personalized Conversational Search

97
[1] How to Leverage Personal Textual Knowledge for Personalized Conversational Information Retrieval. Mo et al. CIKM 2024.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&sortby=pubdate&citation_for_view=AqsGXGkAAAAJ:Zph67rFs4hoC


Incorporating explicit user profile into query rewriting

Personalized Conversational Search

98[1] How to Leverage Personal Textual Knowledge for Personalized Conversational Information Retrieval. Mo et al. CIKM 2024.

➢ Observation [1]: If the personalization 

requirement is not determined well, 

using all historical turns or the selection 

judged by LLMs will both hurt the 

performance compared to without 

personalized query rewriting.

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=AqsGXGkAAAAJ&sortby=pubdate&citation_for_view=AqsGXGkAAAAJ:Zph67rFs4hoC


Incorporating explicit user profile into query rewriting

➢ Idea:  Generating multiple queries with and without user information to cover 

different aspects and aggregate them to improve retrieval [1].

Personalized Conversational Search

99
[1] Generating Multi-Aspect Queries for Conversational Search. Abbasiantaeb et al. arXiv 2024.

https://arxiv.org/search/cs?searchtype=author&query=Abbasiantaeb,+Z


Incorporating explicit user profile into query rewriting

➢ Multiple queries retrieval with personalization outperform single query retrieval.

➢ The LLM might not address personalized query well (answer as expansion hurt).

➢ How to aggregate the personalized information is important (re-rank hurt).

Personalized Conversational Search

100[1] Generating Multi-Aspect Queries for Conversational Search. Abbasiantaeb et al. arXiv 2024.

https://arxiv.org/search/cs?searchtype=author&query=Abbasiantaeb,+Z


Leveraging implicit user preference from conversation history

➢ Motivation: 

○ Existing studies for single-turn personalized benchmark treats each user 

utterance as independent [1] 

○ The multi-turn conversation focus on modeling interaction structure or 

dialogue coherence while remaining largely user-agnostic [2].

○ No connection between personalization and conversation.

Personalized Conversational Search

101

[1] Lamp: When large language models meet personalization. Salemi et al. ACL 2024.
[2] A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations. Li et al. arXiv 2025.



Leveraging implicit user preference from conversation history

➢ Idea [1]: (1) Simulate the conversational context toward the current turn; (2) 

Construct personalized conversational context according to all historical 

messages of a specific user as long-term personalized signals; (3) Combine 

both as condition for personalized generation.

➢ Pros: Standardized conversational personalized generation and benchmarking.

➢ Cons: The condition on historical context navigation is uncontrollable.

Personalized Conversational Search

102[1] A Personalized Conversational Benchmark: Towards Simulating Personalized Conversations. Li et al. arXiv 2025.



Summary:

➢ Conclusion: Personalization in LLM era with multi-turn interaction is important 

and require new paradigm to achieve.

➢ Key Challenge: (1) Identify the personalization requirement and injection 

method and (2) Using user profile in suitable ways.

➢ Open questions: 

○ How to modeling and inject personalized signals for various scenarios?

○ How to formulate/evaluate personalization task with LLMs? (user-centric)

Generating Response in Conversational Search
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● Online
○ Query performance prediction

● Online 
○ LLM-based relevance judgment prediction 
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● Online
○ Query performance prediction

● Online
○ LLM-based relevance judgment prediction 
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● Query performance prediction (QPP)
○ Predicts retrieval quality of search system for query without relevance 

judgments
○ QPP benefits a variety of applications in ad-hoc search, e.g., selective 

query expansion [1,2,3], query variant selection [4,5]

[1] Thomas et al. Tasks, Queries, and Rankers in Pre-Retrieval Performance Prediction. ADCS 2017.
[2] Scells et al. Query Variation Performance Prediction for Systematic Reviews. SIGIR 2018.
[3] Di Nunzio et al. Study of a Gain Based Approach for Query Aspects in Recall Oriented Tasks. Applied Sciences 2021.
[4] Cronen-Townsend et al. A Language Modeling Framework for Selective Query Expansion. Technical Report 2004.
[5] Datta et al. A Deep Learning Approach for Selective Relevance Feedback. ECIR 2024.
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● Query performance prediction (QPP)
○ Two types of methods

■ Pre-retrieval: 𝑓(𝑞𝑢𝑒𝑟𝑦)→𝑄𝑃𝑃 score
■ Post-retrieval: 𝑓(𝑞𝑢𝑒𝑟𝑦, 𝑟𝑎𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡)→𝑄𝑃𝑃 𝑠𝑐𝑜𝑟𝑒

● Unsupervised 
○ e.g., retrieval score-based methods: 𝑓(𝑟𝑎𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡)→𝑄𝑃𝑃 𝑠𝑐𝑜𝑟𝑒

● Supervised
○ e.g., fine-tune BERT models: 𝑓(𝑞𝑢𝑒𝑟𝑦, 𝑟𝑎𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡)→ 𝑄𝑃𝑃 𝑠𝑐𝑜𝑟𝑒



● QPP for conversational search
○ [1] use retrieval score-based QPP values to predict the difficulty of a user 

query and use a threshold for decision
■ performance is comparable to fine-tined BERT

○ [2]  use a set of QPP features to train a classier 
■ QPP features make a difference

[1] Arabzadeh et al. Unsupervised Question Clarity Prediction Through Retrieved Item Coherency. CIKM 2022.
[2] Roitman et al. A Study of Query Performance Prediction for Answer Quality Determination. ICTIR 2019.

110
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● QPP for conversational search
○ How well QPP methods designed for ad-hoc search generalize in 

conversational search?
■ [1] reproduces QPP methods in conversational search

■ Findings:
● Feeding query writes works well; QPP quality tends to be better if 

query rewriting quality is higher
● Score-based QPP works well, likely by skipping query 

understanding in conversational search
[1] Meng et al. Query Performance Prediction: From Ad-hoc to Conversational Search. SIGIR 2023. 111
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● Query performance prediction (QPP)
○ How to improve QPP for conversational search?

■ [1] conducts an empirical analysis:
● Lower query rewriting quality yields lower retrieval quality
● Query rewriting quality provides evidence for QPP

[1] Meng et al. Performance Prediction for Conversational Search Using Perplexities of Query Rewrites. QPP++ 2023. 112
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● Query performance prediction (QPP)
○ How to improve QPP for conversational search?

■ [1] proposes perplexity-based QPP framework (PPL-QPP)
● Evaluate the query rewriting quality via perplexity 
● Inject the quality into the QPP via linear interpolation

■ [1] found that 
● PPL-QPP results in higher QPP quality, especially on datasets 

where query rewriting is challenging

[1] Meng et al. Performance Prediction for Conversational Search Using Perplexities of Query Rewrites. QPP++ 2023. 113
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● Query performance prediction (QPP)
○ How to improve QPP for conversational search?

■ Embeddings from conversational dense retrievers have the potential 
to be used for QPP

■ [1] proposes geometric QPP methods
● Fetch embeddings of query and retrieved document from 

conversational dense retrievers
● Measure the proximity of the query and documents in the 

embedding space

[1] Faggioli et al. A Geometric Framework for Query Performance Prediction in Conversational Search. SIGIR 2023. 114

Automatic Evaluation for Conversational Search



● Query performance prediction (QPP)
○ [1] proposes QPP-GenRE, which predicts IR measures using LLM-generated 

judgments
■ Supports both ad-hoc and conversational search (via query rewrites)
■ [1] devises an approximation strategy for predicting recall-based metrics 

● Only judges the top 𝒏 items in the ranked list (𝒏 ≪ total corpus size) 
to avoid scanning the full corpus

[1] Meng et al. Query Performance Prediction using Relevance Judgments Generated by Large Language Models. TOIS 2025. 115

Automatic Evaluation for Conversational Search

Predicting a precision-based metric Predicting a metric considering recall



● Query performance prediction (QPP)
○ [1] found prompting LLMs for relevance prediction yields limited and 

unstable performance
○ [1] fine-tune LLMs for relevance prediction

■ LLMs: Llama and Mistral families, with sizes ranging from 1B to 70B
■ Fine-tuning method: QLoRA, a parameter-efficient fine-tuning method
■ Training data: human-labeled relevance judgments of MS MARCO

[1] Meng et al. Query Performance Prediction using Relevance Judgments Generated by Large Language Models. TOIS 2025.
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● Query performance prediction (QPP)
○ [1] shows that 

■ fine-tuning enhances relevance judgment generation and QPP
■ fine-tuning much smaller LLM can yield more effective results than 

few-shot prompting with much larger models

[1] Meng et al. Query Performance Prediction using Relevance Judgments Generated by Large Language Models. TOIS 2025.

Automatic Evaluation for Conversational Search



● Query performance prediction (QPP)
○ [1] shows QPP-GenRE achieves state-of-the-art performance in predicting 

the performance of both ad-hoc and conversational search retrievers
■ In the conversational search setting

● [1] predicts the performance of ConvDR, a conversational dense 
retriever

● [1] uses a Llama-3.2-3B-Instruct fine-tuned on MS MARCO for 
predicting relevance judgments

[1] Meng et al. Query Performance Prediction using Relevance Judgments Generated by Large Language Models. TOIS 2025.

Automatic Evaluation for Conversational Search
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● Online 
○ Query performance prediction

● Offline
○ LLM-based relevance judgment prediction 
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● LLM-based relevance judgment prediction
○ [1] shows the correlation between system rankings using human-annotated 

relevance judgments and those using LLM-predicted judgments
■ Use query rewrites in the prompt

[1] Abbasiantaeb et al. Improving the Reusability of Conversational Search Test Collections. ECIR 2025.
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● LLM-based relevance judgment prediction
○ [1] investigates filling gaps in relevance judgments for conversational search

■ Fill the holes using few-shot LLMs, Llama 3 and GPT 3.5
■ Compare with filling the holes with human
■ Llama ranks the new system closer to the original location

[1] Abbasiantaeb et al. Improving the Reusability of Conversational Search Test Collections. ECIR 2025.
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Q & A

● What is an “agent”？
○ An agent is an autonomous entity that makes decisions and takes 

actions on users’ behalf [1,2]
○ The idea of agents traces back to the 1950s with the emergence of 

symbolic AI [1]

● Typical capabilities of agents [3]
○ Reflection and refinement 
○ Planning
○ Memory
○ Tool use
○ Multi-agent collaboration

[1] Shah et al. Agents Are Not Enough. arXiv 2024.
[2] Meng et al. Optimizing Agentic Workflows for Information Access. University of Amsterdam 2025.
[3] White et al. Information Access in the Era of Generative AI. Springer 2025.
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● Tool use
○ Search engines are a key tool
○ Recent work explores how LLMs act as agents that autonomously use 

search engines to meet users’ information needs [1,2,3]

[1] Li et al. Search-o1: Agentic Search-Enhanced Large Reasoning Models. arXiv 2025.
[2] Jin et al. Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning. COLM 2025.
[3] Song et al. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning. arXiv 2025.
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[1] Li et al. Search-o1: Agentic Search-Enhanced Large Reasoning Models. arXiv 2025.

● Tool use
○ [1] proposes Agentic RAG and Search-o1, purely based on prompting
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[1] Jin et al. Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning. COLM 2025.
[2] Song et al. R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning. arXiv 2025.

● Tool use
○ [1,2] extend this line of work by applying reinforcement learning to teach 

LLMs how to effectively use search engines during multi-step reasoning
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● Tool use
○ Future direction

■ Go beyond search engines
● Use tools to enhance retrieval quality

○ E.g., use automatic evaluation tools such as Query 
Performance Prediction (QPP) to guide or verify results

● Use tools to handle broader user needs
○ E.g., for the query “What is the capital of Scotland, and 

what’s the current weather?”, combine search engines with 
a weather forecast API
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Q & A

● We revisited key tasks and concepts in conversational search:

○ The core concepts of conversational search

○ Conversational search paradigms

○ Mixed-initiative interactions

● We explored emerging topics in the era of large language models (LLMs):

○ Conversational search with LLM-based generation 

○ Personalized conversational search 

○ Automatic evaluation for conversational search 

○ Agentic conversational search
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● Future directions

○ Agentic related

■ Enhancing reasoning capabilities

■ Reflection and self-correction

■ Tool use beyond traditional document retrieval

○ Broader Applicability

■ Multilingual and Multimodal scenarios

■ Domain-specific scenarios (financial, legal, medical, etc.)

■ Search as an intermediate step in complex tasks (QA, assistance, …)

○ Evaluation
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